

Luke Skaff

Automotive Diagnostic Interface

Senior Design Project

Old Dominion University

April 23, 2007

 Page 1

Abstract:

A microcontroller based automotive computer interface is

described. The device utilizes a propriety serial interface to

connect to an automotive engine control computer and retrieve

current engine conditions. This information is then processed and

output to a LCD. The hardware, software, and interface details are

described.

 Page 2

Overview, History, Background, Introduction:

Project Overview:

In this project an interface and display was designed to retrieve automotive

diagnostic data from a late 1980’s to early 1990’s General Motors automotive engine

control unit / computer known as an ECU. This interface utilizes an Atmel AVR 8-bit

microcontroller to perform serial communication over a one wire serial interface with the

ECU. This diagnostic data is then processed by the AVR microcontroller and outputted

to a LCD in an easy to read format for the user to view.

History:

The emissions laws put into action in the 1970’s forced automobile manufacturers

to search for new ways to make engines more efficient and cleaner. About the same time

microcontrollers and embedded computers were starting to gain more market and become

lower in cost. Automobile manufactures started experimenting with the use of

microcontroller based embedded computers to control automobile engines around this

time. A few cars were released with extremely primitive computer controlled fuel

injection in the late 1970’s including one by the General Motors (GM) Cadillac division.

These systems where problematic and had great room for improvement. The main

limitation at the time was the lack of computing power of microcontrollers and the

inability to deal with the temperature extremes of an automotive application. The early to

mid 1980’s was a large crossover period where many cars went from strictly carbureted

engines of the past to computer controlled carburetors and fuel injection. By the late

 Page 3

1980’s almost all cars and trucks were switched over to some form of computer

controlled fuel injection.

A problem that arose very quickly was the lack of a standard for which mechanics

could retrieve data from the onboard computers to diagnose problems. Some systems did

not output any data that could be read by a mechanic. It was not until 1987 when

California Air Resources Board (CARB) required that all new vehicles sold in California

starting in the 1988 manufacturer's year have some basic On-Board Diagnostics (OBD)

capability. This was a loose standard and every auto manufacturer went about

implementing OBD in a very different way. In 1994 The Society of Automotive

Engineers (SAE) mandated a cross-platform standard that all automotive manufacturers

must follow starting in the 1996 production year called OBD-II. The on board

diagnostics systems of previous years are commonly referred to as Pre-OBD or OBD-I.

The complexity of the on-board automotive control computer has increased

significantly in the past two decades. The first engine computers were 8-bit

microprocessors running code written in assembly. Some of these computers also did not

have full control over very basic engine functions such as fuel and spark. Modern

automobile control computers are 32-bit with code written in high level programming

languages, for example C, and control every aspect of engine operation along with

transmission, differentials, anti-lock brakes, traction control, and more.

Background on Project:

This project will focus on interfacing with an onboard automotive computer using

the GM later 8192 baud OBD-I interface. GM started using the 8192 baud OBD-I

 Page 4

interface in 1986 and continued using it widely until 1995 when a universal interface and

protocol was mandated by SAE. The OBD-I interface on GM cars is a proprietary GM

interface. There are many ways to retrieve data from the onboard engine control

computer, commonly called Engine Control Unit (ECU) and it will be referred to as the

ECU in the remainder of this report. There are many other names this onboard computer

is called, the most popular being Engine Control Module (ECM) and Power-train Control

Module (PCM) which refers to an ECU/ECM that also controls other parts of the power-

train such as the transmission.

The ECU chosen for this project is one found is many late 1980’s and early

1990’s GM vehicles and is know by its part number, 1227730. The ECU has a

customized version of the Motorola 6811 processor and runs code written in Assembly.

The processor runs at 8.388 Mhz’s, has 2 kilobytes of RAM, and a 32 kilobyte UV

EPROM for code and calibration data. This code has since been disassembled and

commented by auto hobbyists for the general public use. GM has platform dependent

code which is vehicle specific and is called code “masks”. The specific code mask a

vehicle runs is determined by engine type, transmission configuration, which ECU is

used in the vehicle, and other vehicle features. The code mask used in this project is the

one used on the 1990-1992 Pontiac Firebird, 1990-1992 Chevrolet Camaro, and the 1990-

1991 Chevrolet Corvette. ECU code along with engine specific data such as fuel maps

are hard coded into a removable EPROM chip inside the ECU, which is called the

“MemCal”, which stands for Memory Calibration Unit. This made it easy for GM to use

the same ECU across different platforms and for technicians to upgrade the calibration in

case a problem was found after production.

 Page 5

Figure 1:

ALDL connector

Introduction:

The purpose of the device designed in this project is to allow a user to retrieve

information of the current status of their automobile ECU without the use of extremely

expensive shop diagnostic computers. There are many devices on the market that allow

home users to connect their laptops to their car ECU’s and retrieve data via computer

software. The purpose of this device is to eliminate the need for the laptop and have a

microcontroller based circuit do the communication with the ECU and output the data to

a LCD.

Discussion & Analysis:

Proprietary General Motors Assembly Line Diagnostic Link (ALDL):

 As mentioned above, GM used its own proprietary communication method for

communicating with its ECU’s. Each GM OBD-I automobile has a connector that is

called the Assembly Line Diagnostic Link (ALDL) connector seen in Figure 1 which is

wired to the ECU. Mechanics can plug their shop diagnostic computer into this

connector to communicate with the onboard ECU and

retrieve engine sensor data and ECU error codes. During the

period of the loose OBD-I standard; GM used two interfaces,

the first of which was a 160 baud interface which was later replaced by an 8192 baud

interface. The 8192 baud interface will be utilized in this project. The term interface

refers to the communication as a whole including communication hardware, the physical

communication method / protocol, and the software protocol. The protocol is the set of

 Page 6

Figure 2:

160 Baud ODB-I protocol [7]

standards that must be followed when designing the hardware and software to

communicate with the ECU properly and reliably.

 The GM 160 baud OBD-I ALDL interface was the first of two OBD-I interfaces

and uses synchronous serial

communication utilizing one data

line. This interface and data

protocol does not allow for two

way commutation with the ECU.

The ECU constantly outputs

diagnostic data at a rate of 160 baud over one wire on pin A of the ALDL connector. The

receiver must be synced to receive at 160 baud in order to correctly receive the data bits

at the “Sample Point” in Figure 2. Each data bit is synced with a falling start edge on the

wave form before the data bit is sent. The drawbacks of this interface are the slow data

speed and the inability for the diagnostic machine to send data to the ECU.

 The GM 8192 baud OBD-I ALDL interface was the second and last of the two

OBD-I interfaces. The 8192 baud interface communicates over pin M of the ALDL

connector. The 8192 baud interface is more complex, faster, allows for more control of

diagnostic data, and more diagnostic data to be retrieved from the ECU. The 8192 baud

interface only uses one wire like the 160 baud interface but uses an asynchronous serial

communication method and allows for two way communications over a single data line.

The 8192 baud interface protocol is also a master/slave protocol and allows for multiple

devices internal and external to the automobile to be connected to it. The ECUs that

implement a 8192 baud interface do not constantly output data like the 160 baud

 Page 7

interface; instead the attached device must send a short message requesting data from the

ECU and the ECU will respond with a 60+ byte burst of data depending on the model of

automobile.

 The 8192 baud ALDL interface uses an asynchronous serial communication

method as a means to transfer data over the data line. The 8192 baud interface also has a

predetermined software communication procedure which can be considered the 8192

baud protocol. The 8192 baud interface uses asynchronous serial communication to

perform the physical task of transmitting and receiving data. Asynchronous serial

communication uses a start signal prior to each byte and a stop signal after each byte of

data sent. This is the same method a serial RS-232 port on a computer uses with the

difference that a RS-232 port has a separate transmit and receive line. In asynchronous

serial communication the number of bits to be transmitted between start and stop bits,

number of stop bits, parity options, and baud rate must be defined prior to any

communication. The 8192 baud ALDL interface uses eight bits with one stop bit and no

parity as seen in the timing diagram of Figure 3 below. The 8192 baud protocol uses an

off standard baud rate of 8192 samples per second as the name implies. The closest

standardized baud rate is 9600, this requires more effort in the hardware and software

design to accommodate this off standard baud rate which is discussed later in this

document.

Figure 3:

Asynchronous serial communication [1]

 Page 8

 The data line is held high when inactive (idle). The transmission device pulls the

data line low before transmitting data to trigger the receiving device to start sampling the

data. The receiving device starts sampling the data line at the preset sample (baud) rate

until it detects the stop bit. The connection is then resynchronized at the next start bit.

The ECU has six documented interface modes; each mode has a different

command set, performs a different operation on the ECU, and receives different

responses from the ECU. The six modes are mode 0, mode 1, mode 2, mode 3, mode 4,

and mode 10. The function of these modes is discussed in detail later in this document.

The modes are triggered by sending the ECU a specific command set.

For reference, refer to Appendix A for the list of commands each ECU mode is

activated by. The most basic command set will include in this order: a message ID byte,

message length byte, mode byte, and a checksum byte. The more complex commands

will have other data bytes transmitted after the mode byte and before the checksum byte.

The first command in the command set is the message ID byte which lets the ECU know

what category of command it is receiving. Since all the commands listed above and in

Appendix A are diagnostic commands they all have the same message ID byte of 0xF4.

The next command in the command set is the message length byte. The most basic

command set has a base message length byte of 0x56 and any other commands or data

transmitted increments the message length number per extra byte transmitted. The mode

byte is simply the desired ECU operation mode number. Other data bytes must be

transmitted in the more complex data modes which are: mode 2, mode 3, and mode 4.

The last byte to be transmitted is the checksum byte. The checksum byte is the one’s

complement of the sum of all bytes transmitted.

 Page 9

Mode 0 is used by diagnostic equipment attached to the ALDL port to stop any

communication on the data line. This would include in-car systems such as a body

(suspension) computer and dash board modules which retrieve data from the ECU

constantly over the diagnostic line. This communication must be stopped for the

diagnostic equipment to accesses data from the ECU at full speed and constantly.

Mode 1 is used to retrieve all diagnostic data from the ECU. This operation mode

is used in the field by test equipment; it is also used in this project. In this mode the

diagnostic equipment or device will send the mode 1 commands over the data line and

the ECU will reply with 64 bytes of diagnostic data. The bytes of data returned is

dependent on the ECU and the code mask General Motors is running on the ECU, but the

ECU chosen in this project returns 64 bytes of diagnostic data.

Mode 2 is used to dump 60 bytes of memory from the ECU to the ALDL data line

starting with a user or device defined address. This is used mainly for debugging

purposes and has little or no use for the average mechanic or technician. The most

significant byte (MSB) of the desired memory start address and least significant byte

(LSB) is transmitted after the mode 2 byte to tell the ECU which address to start the

memory dump at. The ECU will then reply with the mode 2 command set and the

desired 60 bytes of data.

Mode 3 will perform a dump of any eight defined addresses. The eight desired

addresses are transmitted after the mode 3 command. These addresses are transmitted

with the most significant byte first followed by the least significant byte. The ECU will

then reply with the mode 3 command set and the desired 8 bytes of data. These addresses

 Page 10

can be any addresses in the whole system including registers, RAM, and ROM. Mode 3

is also used in debugging and had little or no use for the average mechanic or technician.

Mode 4 is a controller mode where the user may change engine fuel, spark, and

other engine parameters. This is a partially implemented feature and does not work on

the production code mask used in this project. For this reason little is known how to

operate this mode or how this mode is supposed to be commanded. It seems to be a GM

development feature that was deactivated on the production code to avoid engine damage

by untrained users.

Mode 10 is used to clear any trouble codes the ECU has stored. A trouble code is

a code stored in the ECU memory when it detects a fault or error in any of its sensor

readings. This is commonly seen by the end user as a “service engine soon” light on the

dash board. The ECU code mask used in the project has 64 trouble codes stored in 8

bytes, each bit representing a trouble code. After a mechanic or technician has retrieved

these codes from the ALDL diagnostic port and repaired the problem the mode 10

command set can be transmitted to the ECU to clear stored trouble codes. This task can

also be accomplished by removing battery power to the ECU.

Circuit Design:

An Atmel Mega324P AVR microcontroller was selected in this project to

communicate and process the ECU data. This data is then output to a Hitachi 44780

controller based 4x20 LCD. The details of the AVR microcontroller and why it was

chosen over similar microcontrollers, like a Microchip PIC microcontroller, is discussed

 Page 11

Figure 4:

UART Interface Circuit

below because is it outside the scope of this section. The Mega324P AVR is the most

powerful AVR in a 40 pin DIP package, in production at the time of this report.

The Universal Asynchronous Receiver/Transmitter (UART) built into the

Mega324P is designed to work with serial communication methods that use separate

transmit and receive data lines such as SCI and SPI. The Mega324P, as with most

microprocessors, is not designed to work with the off standard one wire interface used in

this project. An interface circuit is needed to convert the one ALDL serial line to two

data lines: a transmit line and a receive line.

One design issue with the microcontroller UART is that the transmit pin on the

microcontroller is held high when inactive. Holding the serial line high when inactive is

extremely common and used

in almost all serial

communication methods. If

the transmit pin of the

microprocessor was connected

directly to the ECU serial line

it would be held high when

the ECU was trying to bring

the line low for

communication. A transistor

is used on pin PD1 of the

microcontroller, as seen in

Figure 4, to isolate the transmit line. The ALDL serial line is held high by the ECU, the

 Page 12

PNP transistor only brings the serial data line low when the transmit pin on the

microcontroller is brought low.

In order to prevent the receive UART from being filled with data that is being

transmitted from the AVR microcontroller a transistor is use to isolate the receive line.

The microcontroller sets pin PD5 high when transmitting so the receive UART on pin

PD0 does not see the data being transmitted. When the microcontroller brings pin PD5

low the transistor is able to pull the receive UART pin, PD0, low when the ALDL line is

low. An ALDL serial activity LED was added for debugging purposes. The LED comes

on when the ALDL serial line is pulled low and remains off when there is no activity on

the line, since the inactive state of a serial line is high.

To accommodate for the off standard baud rate of 8192 a crystal oscillator of

19.6608 Mhz was selected. At this clock rate the divider in the UART baud rate register,

defined as UBRR, works out to zero percent error. As seen in the equation below an

exact baud rate of 8192 is achieved with a UBRR register setting of 149 and a crystal

oscillator of 19.6608 Mhz.

8192
1)(14916

Mhz 19660800

)1UBRR(16

Frequency Oscillator
BaudRate =

+×
=

+×
=

According to the microcontroller data sheet a percentage of error up to two percent is

acceptable in most situations but in this project unnecessary error was eliminated for

completeness and to reduce potential problems.

Automotive Computer Test Bench:

In order to make this project feasible during software development a method for

running the automotive ECU on a bench had to be created. Each engine sensor the ECU

 Page 13

reads is simulated so the ECU will not go into an error running state. Some sensors are

simply variable resistors such as the temperature sensors and position sensors, so these

could be simulated with a potentiometer. The ECU outputs a 5 volt reference for all the

resistance based circuits. For the temperature sensors and position sensors, potentiometer

resistance values were selected based on the resistance range of the original sensor the

potentiometer was replacing. Two variable frequency square wave pulse generation

circuits had to be designed to simulate the vehicle speed sensor and the engine RPM

input. The frequency of each square wave is directly proportional to the speed in MPH

and engine revolutions in RPM the ECU reads.

 Designing the circuits to simulate the vehicle speed sensor and engine RPM

output required more then just a potentiometer. Experimentation was done with using a

555 Timer circuit and using a set capacitance value with a potentiometer in the RC

section of the 555 Timer circuit. The result was the inability to produce a wide enough

frequency output range and the inability to bring the output down to zero hertz for an off

state. So a Voltage Controlled Oscillator (VCO) IC was selected to perform the task. A

low cost CMOS 4046 Phase-Locked Loop with VCO IC was selected for the job. The

inputs the for phase-locked loop portion of the IC are tied to an inactive state and

affectively disabled. In CMOS all inactive inputs must be tied low to avoid damage to

the IC and to produce reliable results. The VCO portion of the IC was used to achieve

the desired square wave output. Since the IC was CMOS and can only output small

output currents in the 1-5mA range, the output was run through a TTL 74LS04 inverter

which can provide up to 20mA output which is more suitable for the ignition module

 Page 14

signal load. An inverter was selected due to easy availability. A TTL buffer or many

other chips could be used to achieve the same affect.

The circuit seen in Figure 5 is the finalized design of the square wave generator

circuit. It consists of two variable square wave outputs, one for the RPM input and one

for the MPH input on the ECU. The output frequency is determined by the capacitance

between pin 6 (Cx) and 7 (Cx), the resistance on pin 11 (R1) and 12 (R2), and the voltage

present on pin 9 (VCOin). Before determining the correct values to be placed on these

pins the desired frequency range to be inputted into the ECU must first be determined.

Figure 5:

RPM and MPH input

Square wave generator circuit

PPout
1

PC1out
2

3
COMPin

4
VCOout

VCC

PC3out

Signal in

PC2out

16

15

14

13

CMOS 4046

Inhibit
5

Cx
6

7
Cx

8
GND

R2

R1

DMODout

VCOin

12

11

10

9

PPout
1

PC1out
2

3
COMPin

4
VCOout

VCC

PC3out

Signal in

PC2out

16

15

14

13

CMOS 4046

Inhibit
5

Cx
6

7
Cx

8
GND

R2

R1

DMODout

VCOin

12

11

10

9

1A
1

1Y
2

3
2A

4
2Y

VCC

6A

6Y

5A

14

13

12

11

74LS04

3A
5

5Y
10

3Y
6

4A
9

GND
7

4Y
8

0.01uF

0.022uF

0.1uF

0.1uF

5V
VCC

RPM

10K
POT

MPH
10K

POT

470K

100K 150K

5V
VCC

0.1uF

To speed sensor
input on ECU

To engine RPM

Input on ECU

 Page 15

The maximum RPM the ECU can read is 6375 RPM’s. This is because the

engine RPM is stored in one byte of memory with a multiplier of 25. This results in 255

multiplied by 25 which equals 6375 RPM. The engine the ECU operates is only capable

of 6000 RPM’s so this limit is not a problem. Some ECU’s and or code masks can read

up to 9000 RPM’s so it was decided to make the RPM generator circuit output a

maximum frequency equivalent to 9000 RPM’s for future uses. The distributor which

generates the RPM signal for the ECU is connected to a camshaft which rotates at half

the speed of the engine output crankshaft. The distributor outputs one pulse per cylinder

fired. So the distributor is outputting 4 pulses per engine rotation on a V8 engine. The

maximum frequency desired for the circuit to produce is calculated below:

Secondper Rotations 150
minuteainSeconds 60

RPM 9000
=

600Hz Revolutionper Pulses 4 Secondper Rotations 150 =×

 The maximum speed the ECU can read is 255 MPH since it is an 8-bit computer

and the speed is stored in one byte of memory. The vehicle speed sensor outputs 2000

pulses per minute at a speed of one mile per minute. A speed of one mile per minute is

60 miles per hour (MPH). So the pulse per second (Hz) at 60 miles per house is 2000

divided by 60 which equals 33.3 Hz. Using this ratio it can be determined that a pulse of

141.6 Hz is needed to max out the ECU’s MPH reading of 255 MPH. Of course this

speed would never be achieved in real life but for testing purposes the full range of the

ECU is utilized. It was chosen to round up the MPH pulse to a max of 150Hz for

simplicity.

 To calculate what resistor and capacitor values were needed to achieve these

desired frequencies a trial and error method was used. The circuit was built on a bread

 Page 16

board and an oscilloscope was used to measure the output frequency. The starting test

values where chosen from the 4046 datasheets graphs and final values where chosen after

educated guesses from the results of the pervious test.

AVR Microcontroller:

The Atmel AVR is an 8-bit microcontroller with Harvard architecture that runs a

RISC instruction set. The Atmel AVR was designed to minimize code storage size and

execution time of code written in assembly and C. This microcontroller is very low cost,

starting at fifty cents for one unit for its simplest model. The AVR also has free

development software platform and low cost development equipment, for example the

programmer is twenty dollars and the full hardware development kit is eighty.

 The AVR’s strongest competitor is the Microchip PIC 8-bit microcontroller [8].

An AVR microcontroller was chosen over the PIC microcontroller which is taught in the

EET curriculum due to the reasons presented below. The AVR has true single cycle

execution unlike the PIC which divides the clock frequency by a factor of four. So the

AVR runs four times faster at the same crystal speed of a PIC. The AVR microcontroller

boasts 131 instructions compared to the PIC which has 35. This allows for smaller code

length to accomplish the same task. Also unlike the one working register in the PIC the

AVR has 32 which allows for more efficient code to be written. The PIC has one pointer

and the AVR has three. Another drawback of the PIC is that the stack only has a depth of

eight in the most common 16C and 16F series. The AVR stack is only limited to the

amount of free memory so more reusable code can be written reducing code complexity

and development time.

 Page 17

Software code:

The code for this project was written in C and compiled with a free open source

compiler named WinAVR. WinAVR is a part of AVR studio, Atmel’s development

software. Programming in C allows for much faster development time, easier to follow

code, and the use of more complex operations with greater ease. The drawback of C code

is the larger code length when downward compiled to machine code with a compiler and

a longer execution time when compared to efficient code written in assembly. This only

becomes a problem in extremely time critical tasks. For most cases the time difference is

unnoticeable and the memory use is not a problem. Many companies develop

microcontroller based software in C do its shorter development time and ease of

maintenance.

The entire code for this project can be viewed in appendix E. The code is split up

into many functions to perform specific tasks. There are four main tasks accomplished

by the code. The first is to initialize the command registers of the microcontroller and

initialize the LCD. Secondly the car and diagnostic data is retrieved from the ECU and

stored in the AVR’s memory. Third the stored car data is processed and calculations are

made to convert the raw values to the real world the sensors are reading. Fourth the

processed data is outputted to the LCD. The second through the fourth task are looped

continually so the LCD will always have the most up to date information from the ECU.

The initialization process of the code is used to configure the microprocessor and

the LCD before use. The I/O ports of the microcontroller are configured for their proper

function either input or output. The UART is configured for the proper baud rate, bit

 Page 18

size, and number of stop bits. The 8-bit operation mode command is transmitted to the

LCD along with commands to reset the display and place the cursor at the being of the

display.

The second main task of the code operation is retrieving car and diagnostic data

from the ECU which is comprised of a few functions. The first thing the code must do is

send out the mode 1 command set to the ECU which commands the ECU to return a

dump of the diagnostic data. This data is then stored one byte at a time in an array to be

used at a later. Timeout detection is also built into the receive routine so if a transmission

error occurs the code will timeout instead of getting hung up in the receive loop.

The third main task of the code operation is to process the stored diagnostic data

from the previous task. The diagnostic data received from the ECU is in a raw,

unprocessed format, and must be processed to produce data that makes sense to the end

user. The data has set dividers and multipliers that must be performed to the raw values

to produce the real world value the sensor is truly reading. These values are then

converted to ASCII for output to the LCD.

The forth and final step is to output the processed ASCII data to the LCD. This

includes putting headings in front of values so the users can identify what value they are

reading. The data outputted to the user are: engine RPM, vehicle MPH, fuel block value

know as BLM, coolant temperature (CTS), intake manifold air pressure (MAP), throttle

position percent (TPS), battery voltage, and ECU trouble codes.

 Page 19

Conclusion:

This project as a whole successfully allows a user to read diagnostic data

from an automotive ECU from a 1990-1992 Pontiac Firebird, 1990-1992

Chevrolet Camaro, and the 1990-1991 Chevrolet Corvette. This device performs

the task of expensive diagnostic equipment with low cost parts. The project had

many obstacles to overcome such as coming up with a method to convert a two

wire UART to a one wire serial system, learning embedded C code used on an

AVR, and the interfacing scheme used to communicate with the ECU. All these

obstacles were overcome and the project was a success. More than the target 100

hours, stated in the project guidelines, were put into making this project

operational but the material learned and the expanded education made it

worthwhile.

 Page 20

References:

1) Asynchronous serial communication. (n.d.). Wikipedia. Retrieved March 24,

2007, from http://en.wikipedia.org/wiki/Asynchronous_serial_communication

2) Atmel AVR. (n.d.). Wikipedia. Retrieved February 25, 2007, from

http://en.wikipedia.org/wiki/Atmel_AVR

3) AVR 8-Bit RISC. (n.d.). Atmel. Retrieved February 25, 2007, from

http://www.atmel.com/products/avr/

4) Barnett, R., O'Cull, L., & Cox, S. (2007). Embedded C Programming and the

Atmel AVR (2nd ed.). Clifton Park, NY: Thomson Delmar Learning.

5) Error Codes from Service Engine Light. (n.d.). Retrieved April 14, 2007, from

http://www.thirdgen.org/service-engine-light-error-codes

6) Gadre, D. V. (2001). Programming and Customizing the AVR Microcontroller.

New York, NY: McGraw-Hill.

7) GM Diagnostics. (n.d.). ECM Guy. Retrieved March 10, 2007, from

http://www.geocities.com/ecmguy.geo/diagnostics/do_diag.html

8) Mitchell. (2006). Automotive Shop Manuals. Mitchell.

9) Morton, J. (2002). AVR an Introductory Course. Woburn, MA: Newnes.

10) On-Board Diagnostics. (n.d.). Wikipedia. Retrieved March 10, 2007, from

http://en.wikipedia.org/wiki/On_Board_Diagnostics

11) Pardue, J. (2005). C Programming for Microcontrollers. Knoxville, TN:

Smiley Micros.

12) Win AVR Compiler. (n.d.). Retrieved February 25, 2007, from

http://winavr.sourceforge.net/

 Page 21

Appendices:

M
o
d
e
 0

M
o
d
e
 1

M
o
d
e
 2

M
o
d
e
 3

M
o
d
e
 4

M
o
d
e
 1
0

C
o
m
m
e
n
ts
:

C
le
a
r

C
o
m
m
u
n
ic
a
ti
o
n
s

D
ia
g
n
o
s
ti
c
 D
a
ta

R
e
q
u
e
s
t

6
0
 B
yt
e
 D
a
ta
 D
u
m
p

w
it
h
 S
ta
rt
 A
d
d
re
s
s

D
u
m
p
 8
 D
e
fi
n
e
d

A
d
d
re
s
s
e
s

C
o
n
tr
o
lle
r
m
o
d
e

C
le
a
r
E
rr
o
r

M
o
d
e

C
o
m
m
a
n
d

M
e
s
s
a
g
e
 I
D
:

0
x
F
4

0
x
F
4

0
x
F
4

0
x
F
4

N
/A

0
x
F
4

M
e
s
s
a
g
e
 L
e
n
g
th
:

0
x
5
6

0
x
5
6

0
x
5
8

0
x
6
5

N
/A

0
x
5
6

M
o
d
e
:

0
x
0
0

0
x
0
1

0
x
0
2

0
x
0
3

N
/A

0
x
0
A

O
th
e
r
D
a
ta
:

A
d
d
re
s
s
 M
S
B

A
d
d
re
s
s
 L
S
B

A
d
d
re
s
s
 1
 M
S
B

A
d
d
re
s
s
 2
 L
S
B

..

..

A
d
d
re
s
s
 8
 M
S
B

A
d
d
re
s
s
 8
 L
S
B

U
n
d
o
c
u
m
e
n
te
d

C
h
e
c
k
s
u
m
 s
e
n
t:

0
x
B
5

0
x
B
4

C
a
lc
u
la
te
d

C
a
lc
u
la
te
d

C
a
lc
u
la
te
d

0
x
A
B

E
C
U
 R
e
s
p
o
n
s
e

M
e
s
s
a
g
e
 I
D
:

0
x
F
4

0
x
F
4

0
x
F
4

0
x
F
4

N
/A

0
x
F
4

M
e
s
s
a
g
e
 L
e
n
g
th
:

0
x
5
6

0
x
9
5

0
x
9
6

0
x
6
3

N
/A

0
x
5
6

M
o
d
e
:

0
x
0
0

0
x
0
1

0
x
0
2

0
x
0
3

N
/A

0
x
0
A

O
th
e
r
D
a
ta
:

D
a
ta
 B
yt
e
 1

..

..

D
a
ta
 B
yt
e
 6
3

B
yt
e
 1

..

..

B
yt
e

6
0

B
yt
e
 1

..

..

B
yt
e
 8

U
n
d
o
c
u
m
e
n
te
d

C
h
e
c
k
s
u
m
 s
e
n
t:

0
x
B
5

C
a
lc
u
la
te
d

C
a
lc
u
la
te
d

C
a
lc
u
la
te
d

C
a
lc
u
la
te
d

0
x
A
B

N
o
te
 1
:
A
ll
c
o
m
m
a
n
d
s
 a
re
 h
e
x
 v
a
lu
e
s

N
o
te
 2
:
A
 c
h
e
c
k
s
u
m
 o
f
"C
a
lu
c
la
te
d
"
m
e
a
n
s
 t
h
e
 c
h
e
c
k
s
u
m
 m
u
c
h
 b
e
 c
a
lc
u
la
te
d
 b
y
th
e
 t
ra
n
s
m
it
te
r
a
t
ti
m
e
 o
f
tr
a
n
s
m
is
s
io
n

A
p
p
e
n
d
ix
 A
 -
 A
L
D
L
 M
o
d
e
 C
o
m
m
a
n
d
 T
a
b
le
 [
7
]

 Page 22

Appendix B – ECU Diagnostic Data Stream Returned in Mode 1 [7]

 Function Equation

1 EPROM ID, (MSB)

2 EPROM ID, (LSB)

3 MALFFLG1 MALFUNCTION WORD 1

 b0 CODE 23, MAT SENSOR LOW

 b1 CODE 22, TPS LOW

 b2 CODE 21, TPS HIGH

 b3 CODE 16, NOT USED

 b4 CODE 15,COOLANT SENSOR LOW TEMP

 b5 CODE 14, COOLANT SENSOR HIGH TEMP

 b6 CODE 13, o2 SENSOR

 b7 CODE 12, NO DPR's

4 ERROR FLAG 2

 b0 CODE 35 not used

 b1 CODE 34 MAP SENSOR LOW

 b2 CODE 33 MAP SENSOR HIGH

 b3 CODE 32 EGR DIAGNOSTIC

 b4 CODE 31 not used

 b5 CODE 26 not used

 b6 CODE 25 MAT SENSOR HIGH

 b7 CODE 24 Vss

5 ERROR FLAG 3

 b0 CODE 51 EPROM ERROR

 b1 CODE 46 VATS FAILED

 b2 CODE 45 o2 RICH

 b3 CODE 44 o2 SENSOR LEAN

 b4 CODE 43 ESC FAILURE

 b5 CODE 42 EST MONITOR ERROR

 b6 CODE 41 CYLINDER SELECT ERROR

 b7 CODE 36 not used

6 ERROR FLAG 4

 b0 CODE 63 NOT USED

 b1 CODE 62 OIL TEMP HIGH

 b2 CODE 61 not used

 b3 CODE 56 not used

 b4 CODE 55 not used

 b5 CODE 54 FUEL PUMP VOLTAGE

 b6 CODE 53 OVER VOLTAGE

 b7 CODE 52 OIL TEMP LOW

7 ERROR FLAG 5

 b0 not used

 Page 23

 b1 not used

 b2 not used

 b3 not used

 b4 not used

 b5 CODE 66 not used

 b6 CODE 65 not used

 b7 CODE 64 not used

8 COOLANT TEMPERATURE, A/D COUNTS Deg c = n x.75 - 40

9 START UP COOLANT TEMPERATURE Deg c = n x.75 - 40

10 TPS A/D COUNTS VDC = n x (5/255)

11 ENGINE SPEED (RPM) RPM = n x 25

12 NEW DRP, TIME BETWEEN REFERENCE PULSES (MSB)

13 NEW DRP+1 TIME BETWEEN REFERENCE PULSES (LSB)
usec = ([n13]*256 + [n14])
x 15.26

14 MPH/1

15 NVMW2, NON-VOLATILE MODE WORD 2

 b0 not used

 b1 not used

 b2 not used

 b3 1 = PLUGGABLE MEMORY FAILURE (err51)

 b4 not used

 b5 1 = VATS OK

 b6 not used

 b7 1 = ESC ENABLED BY DELTA COOLANT

16 ENG/Vss RATIO TO DETERMINE GEAR N = RPM/MPH

17 OXYGEN SENSOR VOLTAGE = N x 4.42

18 o2 SENSOR RICH/LEAN TRANSITION COUNTER

19 BASE PULSE (FUEL) C/L FINE CORRECTION

20 BLM

21 BLM CELL Number

22 CLOSED LOOP INTEGRATOR

23 IDLE SPEED, PRESENT IAC MOTOR POSITION Steps

24 SCALED TPS, auto zero %TPS = N/2.56

25 DESIRED IDLE SPEED, RPM/12.5

26 MANIFOLD AIR PRESSURE, A/D CTS VOLTS = N x (5/255)

27 SC1 SDI STATUS OF SC1 INPUT DISCRETES

 b0 NOT USED

 b1 A/C LOW PRESSURE SWITCH

 b2 SECOND GEAR

 b3 NOT USED

 b4 NOT USED

 b5 A/C REQUEST (0 = A/C REQUESTED)

 b6 NOT USED

 b7 2ND FAN REQUEST

 Page 24

28 FMD SDI INPUT STATES TO FMD VIA SSR

 b0 COOLANT SWITCH (1 = 348 ohm, 0 = 4 K)

 b1 COP2 (< 54 usec BETWEEN FALLING EDGES)

 b2 EST ENABLE

 b3 PORT, PIN8

 b4 FUEL PUMP ENABLE

 b5 not used

 b6 IRQ ENABLE

 b7 DATA STEER (0 = BYTE 1, 1 = BYTE 2)

29 1 l NVMW1 NON-VOLATILE MODE WORD

30 MAT, A/D COUNTS Table Lookup

31 EGR DUTY CYCLE %DC = N/2.56

32 CHARCOAL CANISTER PURGE DUTY CYCLE %DC = N/2.56

33 DIAGMW2 DIAGNOSTIC MODE WORD 2 (CURRENT MALF FLAGS)

 b0 1 = err 41 INDICATED (CYLINDER SELECT ERR)

 b1 1 = err 25 THIS PASS INDICATED

 b2 1 = REF PULSE IN CURRENT 100 msec.

 b3 1 = DRP IN LAST 100 msec.

 b4 1 = err 54 LOCKED IN

 b5 E = err 54 PRESENT

 b6 b6 1 = PASSED err 54A

 b7 1 = ESC ENABLED

34 BATTERY VOLTAGE, A/D COUNTS Vbatt = n/10

35 FUEL PUMP POWER Vbatt = n/10

36 DIAGMW4 DIAGNOSTIC MODE WORD 4 (CURRENT MALF FLAGS)

 b0 1 = MALF 32 ACTIVE

 b1 not used

 b2 1 = EGR DIAGNOSTIC TEST IN WORK

 b3 OPTION FOR 1 PASS

 b4 TEST CYCLE TIME FLAG

 b5 1 = A/C FIRST PASS WITH HIGH MPH

 b6 1 = A/C CLUTCH DISABLED DUE TO HIGH MPH

 b7 1 = err 52 or 62 PRESENT

37 MIN LEARNED IAC POSITION (KEEP ALIVE) STEPS

38 LINEARIZED OIL TEMP (MSB) Deg c = n x.75 - 40

39 TOTAL UNLIMITED SPARK ADV. REL TO TDC (MSB)

TOTAL UNLIMITED SPARK ADV. REL TO TDC (LSB)

Double byte value in 2's complement representation

40

 Page 25

If Bit 7 of MSB = 0 then result is positiv

 Value = ([n41] x 256 + [n42])

If Bit 7 of MSB = 1 then result is negative

 Value = 65536 - ([n41] x 256 + [n42])

Deg Spk = value x 90/256

41 UNLIMITED SPARK ADV. REL TO REF. PULSE (MSB)

TOTAL UNLIMITED SPARK ADV. REL TO TDC (LSB)

Double byte value in 2's complement representation

If Bit 7 of MSB = 0 then result is positive

 Value = ([n41] x 256 + [n42])

If Bit 7 of MSB = 1 then result is negative

 Value = 65536 - ([n41] x 256 + [n42])

Deg Spk = value x 90/256

42

43 ESC (KNOCK) SIGNAL INPUT COUNTS

44 ESC (KNOCK RETARD) Deg = n x 45/256

45 INJECTOR BASE PULSE WIDTH (MSB)

46 OBPINJ + 1 INJECTOR BASE PULSE WIDTH (LSB)
msec = ([n45] x 256 +
[n46])/65.536

47 TOTAL FUEL AIR VALUE (FINAL) (MSB)

48 TOTAL FUEL AIR VALUE (FINAL) (LSB)
A/F RATIO = 6553.6/([n47]
x 256) + 6553.6/[n48]

49 RUNNING TOTAL OF FUEL DELIVERED (MSB)

50 RUNNING TOTAL OF FUEL DELIVERED (LSB)
usec = ([n49] x 256 +
[n50])*15.26

51 RUNNING TOTAL OF DISTANCE TRAVELED Miles = n/2000

52 ENGINE RUNNING TIME IN SECONDS (MSB)

53 ENGINE RUNNING TIME IN SECONDS (LSB)
Sec's = ([n52] x 256 +
[n53])

54 Mode Word 2

 b0 not used

 b1 MALF 14 OR 15 THIS START UP

 b2 DRP, (6.25 MSEC CHECK)

 b3 1 = IN CCM MODE

 b4 DIAGNOSTIC SWITCH IN DIAG. POSITION

 b5 DIAGNOSTIC SWITCH IN ALDL POSITION

 b6 HIGH BATTERY VOLTAGE-DISABLE MCU SOL.DIS.

 b7 SHIFT LIGHT, 1 = ON

55 Torque Converter Clutch Mode Word

 b0 1 = TCC LOCKED

1 = COAST RELEASE b1

 Page 26

TPS THRESHOLD IN USE (HI MPH)

 b2 1 = 4-3/4-2 DOWNSHIFT RELEASE IN PROGRESS

 b3 1 = STATUS OF FOURTH GEAR LAST PASS

 b4 1 = TCC LOCKED FOR PASS BY NOISE

 b5 not used

 b6 not used

 b7 not used

56 Fuel Modeling Device Byte 1

 GEMERIC ALDL BYTE = 44

 b0 PARK/NEUTRAL SWITCH (1 = DRIVE)

 b1 1 = IN 3RD OR 4TH GEAR

 b2 1 = IN 4TH GEAR

 b3 0 = POWER STEERING CRAMP - CHANGE FROM '89

 b4 not used

 b5 not used

0 = HIGH A/C HEAD PRESSURE INDICATED

 b6

(IF N.O. SWITCH)

 b7 1 = A/C CLUTCH ENGAGED

57 Mode Word 1

 b0 ADVANCE FLAG, 0 = ADV., 1 = RTD

 b1 1 = HIGHWAY FUEL TIMER ENABLED

 b2 INTERRUPT SERVICE EXC. 6.25 msec

1 = ALL FAN 1 PID STEPS ADDED

 b3

(FAN 1 ENABLED)

 b4 1 = 1st PASS WITH 1 ROAD SPEED PULSE

 b5 AIR COND. CLUTCH FLAG (0 = A/C CLUTCH ON)

 b6 BYPASS CHECK ENABLE

 b7 ENGINE RUNNING FLAG (1 = RUNNING)

58 Non Volatile MW

 b0 1 = 02 SENSOR READY

 b1 1 = CLOSED LOOP TIMER TIMED OUT

 b2 not used

 b3 1 = BAD SHUTDOWN

 b4 Not used

 b5 1 = IAC KICKDOWN ENABLED

 b6 1 = KICKDOWN ENABLED

 b7 1 = err 42 FAILED (EST monitor)

59 Computer Aided Ratio Selection Mode Word

 b0 1 = CARS DISABLED DUE TO LOW BAROMETRIC PRESSURE

 b1 1 = CARS ACTIVE

 Page 27

 b2 not used

 b3 not used

 b4 1 = TRANSMISSION IN 4
th
. GEAR

 b5 1 = TRANSMISSION IN 1
st
, GEAR

 b6 1 = WAIT FOR Vss RESET

 b7 not used

60 Closed Loop CC Mode Word

 b0 BOOKKEEPING FLIP FLOP

 b1 1 = Use F69 ALT TABLE

 b2 1 = IDLE

 b3 1 = UNDERSPEED IDLE SPARK, 0 = OVERSPEED

 b4 1 = Decel Fuel Cut Ooff STALL SAVER ENABLED

 b5 1 = USING KF93 MULT TRIM TO D-MAP A.E. ENABLE THRESHOLD

 b6 1 = Non Volatile. MEMORY BOMBED

 b7 1 = Has been in Closed Loop at least once since restart

61 AIR MW

 GENRERIC ALDL BYTE = 18

 b0 1 = 100 msec OLD CCP PURGE ON FLAG (0 = OFF)

 b1 1 = AIR CONTROLLED, 0 = AIR DIVERTED

 b2 1 = AIR SWITCHED TO PORT (If air is controlled)

 b3 1 = FAN 1 REQUESTED

 b4 1 = FAN 2 REQUESTED

 b5 1 = 'OLD' FAN 1 STATE WAS ON

 b6 1 = ALL FAN 2 PID STEPS ADDED (Fan 2 enabled)

 b7 1 = DECEL ENLEANMENT ACTIVE

62 LCCP MW

 b0 1 = CAN PURGE ACTIVE

 b1 1 = TIME 1
st
. REF TO ENG RUN

 b2 1 = MALFS HAVE OCCURRED

 b3 1 = IN 8192, Mode 4, Bypass fuel mode

 b4 2
nd
. TIME COOLANT

 b5 1 = err 43A (voltage presence check) Indicated

 b6 1 = KICKDOWN REQUEST

 b7 1 = TIME OUT FINISHED

63 Mode Word Fuel/Air 1

 b0 1 = IN SINGLE FIRE MODE

 b1 BLM ENABLE FLAG, 1 = ENABLE STORE

 b2 1 = DELIVER 0 FUEL (Single fire)

 b3 1 = ALLOW SINGLE FIRE DISABLE

 b4 1 = VEHICLE SPEED SENSOR FAILURE

 b5 1 = EECC SLOW 02 RICH, 0 = SLOW 02 LEAN

 Page 28

 b6 RICH-LEAN FLAG (1 = RICH, 0 = LEAN)

 b7 CLOSED LOOP FLAG, 1 = CLOSED LOOP

 Page 29

Appendix C – ECU Trouble Codes for ALL GM OBD-I systems [5]

12. No reference pulses to Electronic Control Module (ECM).

13. Oxygen sensor signal stays lean during warm engine cruise

14. High temperature indicated at engine coolant temp sensor

15. Low temperature indicated at engine coolant temp sensor

16. High battery voltage OR Direct ignition system open or shorted to ground

17. RPM signal problem

18-20. N/A

21. High voltage at throttle position sensor

22. Low voltage at throttle position sensor OR Fuel cutoff relay circuit open or shorted to

ground

23. Low temperature at manifold air temperature sensor OR Throttle position sensor error

24. Circuit fault in vehicle speed sensor

25. High temperature at manifold air temperature sensor OR Vacuum switching valve

circuit open or shorted to ground OR High voltage at ATS sensor

26. Fault in quad driver module

27. Fault in 2nd gear switch

28. Fault in 3rd gear switch

29. Fault in 4th gear switch

30. N/A

31. Low voltage at manifold absolute pressure sensor OR Fuel injector OR Park or

neutral switch OR CAM diagnostic OR Governor malfunction OR Wastegate

overboost OR Wastegate eletrical signal open or shorted to ground

32. Fault in barometric pressure sensor circuit OR Fault in exhaust gas recirculation valve

diagnostic switch OR Fault in electronic vacuum regulator valve

33. High voltage (low vacuum) at mass air flow sensor (or MAP sensor)

34. Low voltage (high vacuum) at mass air flow sensor (or MAP sensor)

35. Idle speed can not be set to desired RPM

36. Burn off at mass air flow sensor OR Problem in transmission shift OR Fault in direct

ignition system OR Missing pulses in electronic spark timing signal

37. N/A

38. Fault in torque converter clutch brake switch

39. Fault in torque converter clutch circuit

40. N/A

41. Fault at cam sensor OR Cylinder select error OR Tach input error

42. Fault at electronic spark timing circuit OR Fault at direct ignition system OR Fault at

fuel cutoff relay circuit

43. Low voltage at electronic spark timing circuit

44. Oxygen sensor lean

45. Oxygen sensor rich

46. Fault at vehicle anti-theft sytem OR Fault at power steering switch

47. Problem at Electronic Control Module (ECM)

48. Misfire

49. Vacuum leak

50. N/A

 Page 30

51. PROM error

52. Problem at Electronic Control Module (ECM) - Missing fuel calpac missing OR

Analog to digital converter error OR Fault at quad driver module OR Low voltage at

oil temperature sensor

53. High voltage at battery OR High voltage at exhaust gas recirculation valve OR

Voltage reference error OR Problem at vehicle anti-theft system

54. Low voltage at fuel pump OR Low voltage at Fuel pump relay OR Output failure at

quad driver module

55. Problem at Electronic Control Module (ECM) - ECM failure OR Serial bus error OR

Fuel lean malfunction

56. Low coolant or corrosivity or fault in port throttle system vacuum sensor

57. N/A

58. Problem at vehicle anti-theft system

59-60. N/A

61. Oxygen sensor degraded OR Port throttle system error OR Cruise control problems

62. Gear switch input diagnostics OR High voltage at oil temperature sensor OR Fault in

cruise control- vacuum solenoid circuit

63. High voltage at manifold absolute pressure sensor OR Fault in exhaust gas

recirculation valve OR Fault at right oxygen sensor

64. Low voltage at manifold absolute pressure sensor OR Fault in exhaust gas

recirculation valve OR Right oxygen sensor lean

65. Failure at exhaust gas recirculation valve OR Failure at injector peak/hold diagnostic

OR Right oxygen sensor rich OR Fault at cruise control position sensor

66. Internal reset of Electronic Control Module (ECM)

67. Fault at cruise control switch

68. Fault at cruise control switch

69. Fault at air conditioner pressure switch

 Page 31

Appendix D – Full Schematic of circuit

2N2906

PNP

2N3906

PNP

2N3906

PNP

Serial

Activity

LED

100 Ohm

10K

Ohm

10K

Ohm

10K

Ohm

5V

VCC

10K

Ohm

ALDL Serial

Data Line

(To ECU)

PB0
1

PB1
2

3
PB2

4
PB3

PA0

PA1

PA2

PA3

40

39

38

37

PD3
17

PD4
18

19
PD5

20
PD6

PC2

PC1

PC0

PD7

24

23

22

21

PB4
5

PB5
6

7
PB6

8
PB7

PA4

PA5

PA6

PA7

36

35

34

33

RESET

9

VCC
10

11
GND

12
XTAL2

AREF

GND

AVCC

PC7

32

31

30

29

XTAL1
13

PD0
14

15
PD1

16
PD2

PC6

PC5

PC4

PC3

28

27

26

25

VSS
1

VDD
2

3
VO

4
RS

R/W
5

E
6

7
DB0

8
DB1

DB2
9

DB3
10

11
DB4

12
DB5

DB6
13

DB7
14

19.6608 Mhz
20 pF

20 pF

4x20 LCDReset

5V

VCC

5V

VCC

5K

ATmega324P

 Page 32

Appendix E – AVR Microcontroller Code

//**
// Auther: Luke Skaff
// EET 480 - Senior Project
// Spring 2007
// Automotive engine computer (ECU) diagnostic interface
// Compiled in WinAVR
//**

//***
// Program description
// Sends Mode 1 command set to ECU
// Stores Mode 1 data
// Calculates desired values from stored data
// Outputs calculated data to LCD
//***

// Dependent librarys
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <util/delay.h>

#define F_CPU 19660800UL // CPU crystal speed 19.6608Mhz
#define FOSC 19660800UL // CPU crystal speed 19.6608Mhz
#define BAUD 8192UL // 8192 Baud rate

// ------ PORT & PIN Definitions -------
#define LCD_PORT PORTC //8-BIT LCD data lines
#define RS_PORT PORTD //Port RS line in on
#define RS 7 //Pin # of RS line
#define E_PORT PORTD //Port Enable line in on
#define E 6 //Pin # of Enable line

#define RXcontrol 5 //Pin # RX enable transistor

#define DataM 0xFF

#define Bit_Set(port,bit_num) (port = port | (0x01 << bit_num))
#define Bit_Clear(port,bit_num) (port = port & ~(0x01 << bit_num))

#define DataStreamSize 63 //Size of receiving data stream
#define CarDataSize 22 //Size of ASCII car data

unsigned char DataStream[DataStreamSize];
#define Def_Offset 3
#define DEF_ERROR1 3 + Def_Offset
#define DEF_ERROR2 4 + Def_Offset
#define DEF_ERROR3 5 + Def_Offset
#define DEF_ERROR4 6 + Def_Offset
#define DEF_ERROR5 7 + Def_Offset
#define DEF_CTS 8 + Def_Offset
#define DEF_RPM 11 + Def_Offset
#define DEF_MPH 14 + Def_Offset
#define DEF_BLM 20 + Def_Offset
#define DEF_BLM_CELL 21 + Def_Offset
#define DEF_STPS 24 + Def_Offset // Scaled Throttle Position Sensor
#define DEF_MAP 26 + Def_Offset // volts = N x (5 / 255)
 // KPa = N * .369 + 10.354
#define DEF_BATT 34 + Def_Offset // volts = N / 10

 Page 33

unsigned char CarData_ASCII[CarDataSize];
#define DATA_CTS_2 0 //COOLANT TEMPERATURE Celsius
#define DATA_CTS_1 1
#define DATA_TPS_v 2 //TPS volts

#define DATA_RPM_4 3
#define DATA_RPM_3 4
#define DATA_RPM_2 5
#define DATA_RPM_1 6

#define DATA_MPH_3 7
#define DATA_MPH_2 8
#define DATA_MPH_1 9

#define DATA_BLM_3 10
#define DATA_BLM_2 20
#define DATA_BLM_1 21

#define DATA_BLM_CELL 11

#define DATA_TPS_3 12
#define DATA_TPS_2 13
#define DATA_TPS_1 14

#define DATA_MAP_3 15
#define DATA_MAP_2 16
#define DATA_MAP_1 17

#define DATA_BATT_2 18
#define DATA_BATT_1 19

//ECU trouble codes lookup table
const unsigned char PROGMEM ErrorCode_Table[]=
{
 23,22,21,16,15,14,13,12,
 35,34,33,32,31,26,25,24,
 51,46,45,44,43,42,41,36,
 63,62,61,56,55,54,53,52,
 00,00,00,00,00,66,65,64
};

//Function prototypes
void LCD_Initialize(void);
void LCD_D_Write(unsigned char);
void LCD_I_Write(unsigned char);
void LCD_Delay(void);
void USART_init(void);
void Binary_Out(unsigned char);
void Get_Car_Data(void);
//void HEX_to_ASCII(unsigned int, unsigned char &, unsigned char &, unsigned char &, unsigned
char &);

// --
// --
// ------------------------ Program Code Starts Here ----------------------------
// --
// --

//**
//* Function: LCD_Initialize *
//* Initialize LCD *
//**
void LCD_Initialize(void)

 Page 34

{
 Bit_Clear(E_PORT,E); // Bring enable pin low

 LCD_I_Write(0x38); // 8-Bit data transfer mode
 LCD_I_Write(0x0C); // Turn display on, No cursor, No blinking
 LCD_I_Write(0x01); // Display clear, Restore to upper left position
 LCD_I_Write(0x06); // Address counter increment after each display
 LCD_I_Write(0x02); // Set address counter to zero, move cursor to home
}

//**
//* Function: LCD_Write *
//* Output data passed in, in data var. to LCD *
//* - Commented out, not used anymore - *
//**
/*void LCD_Write(unsigned char data, unsigned char select)
{
 Bit_Set(E_PORT,E);

 if(select==0xFF)
 Bit_Set(RS_PORT,RS); //LCD Data mode
 else
 Bit_Clear(RS_PORT,RS); //LCD Instruction mode

 LCD_PORT=data;

 _delay_ms(1);
 Bit_Clear(E_PORT,E);
 _delay_ms(1);

}
*/

//**
//* Function: LCD_D_Write *
//* Output data passed in, in data var. to LCD *
//**
void LCD_D_Write(unsigned char data)
{
 Bit_Set(E_PORT,E);
 Bit_Set(RS_PORT,RS); //LCD Data mode

 LCD_PORT=data;

 LCD_Delay();
 Bit_Clear(E_PORT,E);
 LCD_Delay();

}

//**
//* Function: LCD_I_Write *
//* Output data passed in, in data var. to LCD *
//**
void LCD_I_Write(unsigned char data)
{
 Bit_Set(E_PORT,E);
 Bit_Clear(RS_PORT,RS); //LCD Instruction mode

 LCD_PORT=data;

 LCD_Delay();
 Bit_Clear(E_PORT,E);
 LCD_Delay();

}

 Page 35

//**
//* Function: LCD_Delay *
//* Relay function used for LCD communication *
//**
void LCD_Delay(void)
{
 _delay_ms(1);
}

//**
//* Function: USART_init *
//* Enable and Initialize UART *
//**
void USART_init(void)
{
 // Set the USART baudrate registers for 8192, UBRR=149
 UBRR0H = 0;
 UBRR0L = 149; // Set for 4800 for PC testing
 //255 = 4800 baud
 //149 = 8192 buad
 //127 = 9600 baud

 //UCSRnA - USART Control and Status Register A
 // Enable 2x speed change, 0=16 divider 1=8 divider
 /*
 Bit 7 MSB
 R RXCn -> USART Receive Complete
 0 TXCn -> TXCn: USART Transmit Complete
 R UDREn -> USART Data Register Empty
 R FEn -> Frame Error
 R DORn -> Data OverRun
 R UPEn -> USART Parity Error
 0 U2Xn -> Double the USART Transmission Speed, 0=16 divider 1=8 divider
 0 MPCMn -> Multi-processor Communication Mode
 Bit 0 LSB
 */
 UCSR0A = (0<<U2X0);

 // UCSRnB - USART Control and Status Register n B
 // Enable receiver
 /*
 Bit 7 MSB
 RXCIE0 = 0 Receive Interrupt disabled
 TXCIE0 = 0 Transmit Interrupt disabled
 UDRIE0 = 0 Interupt disabled
 RXEN0 = 1 Receive enabled
 TXEN0 = 1 Transmit enabled
 UCSZ02 = 0 8-bit mode
 RXB80 = 0 9'th RX data bit when using 9-bit UART
 TXB80 = 0 9'th TX data bit when using 9-bit UART
 Bit 0 LSB
 */
 UCSR0B =(1<<RXEN0)|(1<<TXEN0);

 // UCSRnC - USART Control and Status Register n C
 // Set the USART to asynchronous at 8 bits no parity and 1 stop bits
 /*
 Bit 7 MSB
 0 UMSEL01 |
 0 UMSEL00 |-> Async
 0 UPM01 |
 0 UPM00 |-> No parity
 0 USBS0 -> 1 stop bits;
 1 UCSZ01 |
 1 UCSZ00 |-> 8-bit
 0 UCPOL0 -> Receiving data sampled on falling edge
 Bit 0 LSB

 Page 36

 */
 UCSR0C
=(0<<UMSEL01)|(0<<UMSEL00)|(0<<UPM01)|(0<<UPM00)|(0<<USBS0)|(1<<UCSZ01)|(1<<UCSZ00)|(0<<UCPOL
0);

}

//**
//* Function: Binary_Out *
//* Outputs any passed in variable to LCD in binary *
//* - Used for debugging - *
//* - Commented out, not used in final working code - *
//**
/*
void Out_Binary(unsigned char data)
{
 for(unsigned char bitn = 8 ; bitn > 0 ; bitn--)
 {
 if(data & (1 << (bitn-1)))
 LCD_Write(0x31,0xFF); // Output 1 to LCD
 else
 LCD_Write(0x30,0xFF); // Output 0 to LCD
 }
}
*/

//***
//* Function: USART_Receive *
//* Waits for incoming data on USART then returns it to the calling *
//* function *
//* - Commented out, not used in final working code - *
//***
/*
unsigned char USART_Receive(void)
{
 // Wait for data to be received
 while (!(UCSR0A & (1<<RXC0)));

 // Get and return received data from buffer
 return UDR0;
}
*/

//**
//* Function: USART_Transmit *
//* Transmit data *
//* Data stream array until array is full *
//**
void USART_Transmit(unsigned char data)
{
 // Wait for empty transmit buffer
 while (!(UCSR0A & (1<<UDRE0)));

 // Put data into buffer, sends the data
 UDR0 = data;

 // Wait for empty transmit buffer
 while (!(UCSR0A & (1<<UDRE0)));
}

//**
//* Function: Get_Car_Data *
//* Waits for incoming data on USART then puts received char into *
//* Data stream array until array is full *
//**
void Get_Car_Data(void)
{

 Page 37

 unsigned int timeout;

 Bit_Set(PORTD,RXcontrol); //Lockout recieve pin

 //Mode 1 command set
 USART_Transmit(0xF4);
 USART_Transmit(0x56);
 USART_Transmit(0x01);
 USART_Transmit(0xB5);

 Bit_Clear(PORTD,RXcontrol); //Open up recieve pin

 for(unsigned char i = 0 ; i < DataStreamSize ; i++)
 {
 timeout=0; // Reset timeout to zero

 // Wait for data to be received if data not recived in timout period
 // then exit loop
 while(!(UCSR0A & (1<<RXC0)) && (timeout < 12000))
 {
 timeout++;
 }

 // Get and return received data from buffer
 if(timeout == 12000)
 DataStream[i]=0; // If timeout load 0 into datastream value
 else
 DataStream[i]=UDR0; // Otherwise load recieved value
 }

 Bit_Set(PORTD,RXcontrol); //Lockout recieve pin
}

//**
//* Function: Flash_LEDs *
//* - Used for debugging - *
//* - Commented out, not used in final working code - *
//**
/*
void Flash_LEDs()
{
 for(int i=0 ; i<20 ; i++)
 {
 PORTA=0x00;
 _delay_ms(1000);
 PORTA=0xFF;
 _delay_ms(1000);
 }
}
*/

//**
//* Function: HEX_to_ASCII *
//* Convert inputted 8-bit HEX data to 4 ANSII digits for LCD *
//**
void HEXtoASCII(unsigned int Hex_Input,unsigned char *digit4, unsigned char *digit3, unsigned
char *digit2, unsigned char *digit1)
{

 // Clear varaibles
 *digit4 = 0x00;
 *digit3 = 0x00;
 *digit2 = 0x00;
 *digit1 = 0x00;

 while(Hex_Input >= 1000)
 {
 Hex_Input=Hex_Input - 1000;
 *digit4 = *digit4 + 0x01;
 }

 Page 38

 while(Hex_Input >= 100)
 {
 Hex_Input=Hex_Input - 100;
 *digit3 = *digit3 + 0x01;
 }

 while(Hex_Input >= 10)
 {
 Hex_Input=Hex_Input - 10;
 *digit2 = *digit2 + 0x01;
 }

 *digit1 = Hex_Input; //remainder

 // Convert to ASCII, OR with 0x30 produces ASCII
 *digit4 = *digit4 | 0x30;
 *digit3 = *digit3 | 0x30;
 *digit2 = *digit2 | 0x30;
 *digit1 = *digit1 | 0x30;
}

//**
//* Function: Calculate_CarData *
//* Convert raw data from data stream to real numbers and put in *
//* ASCII format *
//**
void Calculate_CarData()
{
 unsigned char ignore;
 unsigned int temp;

 // Calculate coolant tempature
 temp = DataStream[DEF_CTS] * 0.75 - 40;
 HEXtoASCII(temp,&ignore, &ignore, &CarData_ASCII[DATA_CTS_2], &CarData_ASCII[DATA_CTS_1]);

 // Calculate RPM
 temp = DataStream[DEF_RPM]*25;
 HEXtoASCII(temp,&CarData_ASCII[DATA_RPM_4], &CarData_ASCII[DATA_RPM_3],
&CarData_ASCII[DATA_RPM_2], &CarData_ASCII[DATA_RPM_1]);

 // Calculate MPH
 temp = DataStream[DEF_MPH] / 1;
 HEXtoASCII(temp,&ignore, &CarData_ASCII[DATA_MPH_3], &CarData_ASCII[DATA_MPH_2],
&CarData_ASCII[DATA_MPH_1]);

 // Calculate Block Learn Multiplier (BLM)
 temp = DataStream[DEF_BLM];
 HEXtoASCII(temp,&ignore, &CarData_ASCII[DATA_BLM_3], &CarData_ASCII[DATA_BLM_2],
&CarData_ASCII[DATA_BLM_1]);

 // Calculate Throttle Position Sensor (TPS) percent
 temp = DataStream[DEF_STPS] / 2.56;
 HEXtoASCII(temp,&ignore, &CarData_ASCII[DATA_TPS_3], &CarData_ASCII[DATA_TPS_2],
&CarData_ASCII[DATA_TPS_1]);

 // Calculate Manifold Air Pressure (MAP)
 temp = (DataStream[DEF_MAP] * 0.369) + 10.354;
 HEXtoASCII(temp,&ignore, &CarData_ASCII[DATA_MAP_3], &CarData_ASCII[DATA_MAP_2],
&CarData_ASCII[DATA_MAP_1]);

 // Calculate Battery voltage
 temp = DataStream[DEF_BATT] / 10;
 HEXtoASCII(temp,&ignore, &ignore, &CarData_ASCII[DATA_BATT_2],
&CarData_ASCII[DATA_BATT_1]);

}

 Page 39

//**
//* Function: Output_CarData() *
//* Output calculated car data and trouble codes to LCD *
//**
void Output_CarData()
{
 unsigned char ignore;
 unsigned int ErrorCode;
 unsigned char bitn=0;
 unsigned char code_2, code_1;
 unsigned char error_bit, error_byte;

 LCD_I_Write(0x02); // Set address counter to zero, move cursor to home

 LCD_D_Write('R');
 LCD_D_Write('P');
 LCD_D_Write('M');
 LCD_D_Write(' ');
 LCD_D_Write(CarData_ASCII[DATA_RPM_4]);
 LCD_D_Write(CarData_ASCII[DATA_RPM_3]);
 LCD_D_Write(CarData_ASCII[DATA_RPM_2]);
 LCD_D_Write(CarData_ASCII[DATA_RPM_1]);

 LCD_D_Write(' '); //Space
 LCD_D_Write(' '); //Space
 LCD_D_Write(' '); //Space

 LCD_D_Write('M');
 LCD_D_Write('P');
 LCD_D_Write('H');
 LCD_D_Write(' ');
 LCD_D_Write(CarData_ASCII[DATA_MPH_3]);
 LCD_D_Write(CarData_ASCII[DATA_MPH_2]);
 LCD_D_Write(CarData_ASCII[DATA_MPH_1]);

 LCD_D_Write(' '); //Space
 LCD_D_Write(' '); //Space

 LCD_D_Write('B');
 LCD_D_Write('L');
 LCD_D_Write('M');
 LCD_D_Write(' ');
 LCD_D_Write(CarData_ASCII[DATA_BLM_3]);
 LCD_D_Write(CarData_ASCII[DATA_BLM_2]);
 LCD_D_Write(CarData_ASCII[DATA_BLM_1]);

 LCD_D_Write(' '); //Space
 LCD_D_Write(' '); //Space
 LCD_D_Write(' '); //Space
 LCD_D_Write(' '); //Space

 LCD_D_Write('C');
 LCD_D_Write('T');
 LCD_D_Write('S');
 LCD_D_Write(' ');
 LCD_D_Write(CarData_ASCII[DATA_CTS_2]);
 LCD_D_Write(CarData_ASCII[DATA_CTS_1]);
 LCD_D_Write('C');
 LCD_D_Write(' ');

 LCD_D_Write(' '); //Space

 LCD_D_Write('M');
 LCD_D_Write('A');
 LCD_D_Write('P');
 LCD_D_Write(' ');

 LCD_D_Write(CarData_ASCII[DATA_MAP_3]);

 Page 40

 LCD_D_Write(CarData_ASCII[DATA_MAP_2]);
 LCD_D_Write(CarData_ASCII[DATA_MAP_1]);
 LCD_D_Write(' '); //Space
 LCD_D_Write(' '); //Space
 LCD_D_Write(' '); //Space
 LCD_D_Write(' '); //Space

 LCD_D_Write('T');
 LCD_D_Write('P');
 LCD_D_Write('S');
 LCD_D_Write(' ');
 LCD_D_Write(CarData_ASCII[DATA_TPS_3]);
 LCD_D_Write(CarData_ASCII[DATA_TPS_2]);
 LCD_D_Write(CarData_ASCII[DATA_TPS_1]);
 LCD_D_Write('%');

 LCD_D_Write(' '); //Space

 LCD_D_Write('B');
 LCD_D_Write('A');
 LCD_D_Write('T');
 LCD_D_Write('T');
 LCD_D_Write(' ');

 LCD_D_Write(CarData_ASCII[DATA_BATT_2]);
 LCD_D_Write(CarData_ASCII[DATA_BATT_1]);
 LCD_D_Write('V');
 LCD_D_Write(' ');

 LCD_D_Write(' ');
 LCD_D_Write(' ');

 error_bit=0; //Reset error bit to zero

 for(error_byte = DEF_ERROR1 ; error_byte < DEF_ERROR5 ; error_byte++)
 {
 for(bitn = 0 ; bitn < 7 ; bitn++)
 {
 //If error bit in datastream is 1 then ouput trouble code
 if(DataStream[error_byte] & (1 << (bitn)))
 {
 ErrorCode = (unsigned char)pgm_read_byte(&ErrorCode_Table[error_bit]);

 if(ErrorCode != 0) //If error code is 0 ignore trouble code
 {
 ErrorCode = (unsigned char)pgm_read_byte(&ErrorCode_Table[error_bit]);

 HEXtoASCII(ErrorCode,&ignore, &ignore, &code_2, &code_1);
 LCD_D_Write(code_2);
 LCD_D_Write(code_1);
 LCD_D_Write(' ');
 }
 }

 error_bit = error_bit + 1; //Increment error bit number

 }
 }

}

//**
//* Function: main *
//* Main control function *
//**
int main (void)
{
 DDRA = 0xFF; // Configure PORTA as output
 DDRC = 0xFF; // Configure PORTC as output

 Page 41

 DDRD = (1<<PD1)|(1<<PD5)|(1<<PD6)|(1<<PD7); // Configure PORTD

 USART_init(); //Initialize USART
 LCD_Initialize(); //Initialize LCD

 // Loop forever
 while(1)
 {
 Get_Car_Data();
 Calculate_CarData();
 Output_CarData();
 }

 while(1)
 ;

}// End of main

 Page 42

Appendix F – General Motors 1227730 ECU pin out [8]

 Page 43

Appendix G – Important Datasheet Pages

